Consider system of equations  $ x + y -az = 1$  ;  $2x + ay + z = 1$   ; $ax + y -z = 2$

  • A

    for $a \ne 1$ system has unique solution.

  • B

    if system has no solution then $'a'$ must be $1$ .

  • C

    for $a \in \left\{ {1,\frac{{ - 1 \pm \sqrt 5 }}{2}} \right\}$ , system has no solution.

  • D

    for $a = \frac{{ - 1 \pm \sqrt 5 }}{2}$ , system has infinite number of solutions.

Similar Questions

The values of $x,y,z$ in order of the system of equations $3x + y + 2z = 3,$ $2x - 3y - z = - 3$, $x + 2y + z = 4,$ are

The value of the determinant$\left| {\,\begin{array}{*{20}{c}}1&1&1\\1&{1 - x}&1\\1&1&{1 + y}\end{array}\,} \right|$is

If $B$ is a $3 \times 3$ matrix such that $B^2 = 0$, then det. $[( I+ B)^{50} -50B]$ is equal to

  • [JEE MAIN 2014]

The existance of the unique solution of the system of equations$2x + y + z = \beta $ , $10x - y + \alpha z = 10$ and $4x+ 3y-z =6$ depends on

The system of equations $x+y+z=6$, $x+2 y+5 z=9$, $x+5 y+\lambda z=\mu$ has no solution if

  • [JEE MAIN 2025]